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[1] Goal

We want to examine the area law
for the general-dimensional de Sitter space time

deformed by a nontrivial matter source ,
and estimate the change of the entropy.

What kind of matter source?

How do we calculate?
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[2] How

like this....

Young-Hwan Hyun Area Law in de Sitter Spacetime with Topological Soliton



Introduction
Solutions of our Model

Area Law of the Deformed Geometry
Conclusion

Goal
Black Hole Thermodynamics
Area Law (Schwarzschild BH)
Area Law (de Sitter Spacetime)
Area Law (SdS 3)

[3] Black Hole Thermodynamics - Historical Review

In 1972, Bekenstein proposed that the black hole area is proportional to
the black hole entropy.

SBH =
ln 2
2

ABH

4G

In 1973, Bardeen, Carter, and Hawking suggested four laws of black
hole thermodynamics.

1 0th : Constant κ (Constant T)

2 1st : dM =
κ

8πG
dA + ΩhdJh (dE = TdS) → T? S? Classically T = 0

3 2nd : dA≥ 0 (dS≥ 0)

4 3rd : κ��ZZ→0 by a finite sequence of operations.
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[4] Black Hole Thermodynamics - Historical Review

In 1975, Hawking fixed the proportionality between T and κ
by using the quantum field theory in the curved spacetime.

TBH =
κ|r=rh

2π

Area law (Bekenstein-Hawking Entropy) :

dE =
κ

8πG
dA→

κ

2π
d

(
A

4G

)

⇔ TdS

SBH =
ABH

4G
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[5] Area Law?

Area Law :

S=
kBc3

~
A

4G

Quantum gravitational equation : equation with ~, G

Entoropy ∼ d.o.f. : quantum gravitational states?

Area dependence (not volume)→ holographic principle

Problem of universality :

different approaches to QG (string theory, LQG, induced gravity, · · ·

different microstates

→ but same area law : why this result is universal?
(check with nontrivial matter source?)

Information loss paradox : thermal radiation, evolution to mixed states.
violates unitarity of evolution, forbidden in ordinary QM.
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[6] Black Hole Thermodynamics Extension (de Sitter spacetime)

In 1976, Gibbons and Hawking extended the area law to the
cosmological horizon (the event horizon in the de Sitter spacetime).

d(−E) =
κdS

8πG
dAdS

TdS =
κdS

2π
→ SdS =

AdS

4G

The entropy accounts for the hidden information behind the horizon. In
the dS spacetime, we see the hidden d.o.f. at the same time.
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[7] Black Hole Thermodynamics Extension (SdS spacetime)

Gibbons-Hawking : Controlled the thermodynamic variables with the
simplest object→ BH. with global hairs.

Then, how about controlling more complicating matter source which is
not hidden behind the black hole horizon? Can we see how the entropy
behaves?

If it deforms the geometry from the SdS or dS, the area law still holds?
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[8] Ex. Matter Distribution Without Horizon (SdS 3)

3 dimensional Schwarzschild de Sitter space (Spradlin 2001) :

ds2 = −(1− 8GE− r2)dt2 +
1

(1− 8GE− r2)
dr2 + r2dφ2

TSdS3 =

√
1− 8GE

2π
, SSdS3 =

AH
SdS3

4G
=

π

2G

√
1− 8GE, (l ≡ 1)

Same degrees of freedom in the gravity/matter side

Localized matter at r=0→ a point-like source rather than a horizon

Then the matter affects on the area law as a global effect (deficit angle)
Tractable matter distribution without horizon→ matter with deficit angle
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[9] Our Model

First, we will consider a matter which energy density goes as 1/r2 which
is the maximum order we can consider as a field theory model.

ρ →
1
r2

Even though the field energy is divergent when the radius goes to
infinity, it will not change the background’s vacuum dominant behavior.

Energy density behavior : {Λ,−Tt
t}

r→rH�1
−−−−−→ {Λ� (d− 2)

v2

2r2
}

For this consideration, let’s choose a proper field configuration.
proper field candidate : O(N− 1) symmetry, a hedge hog shape.

φi = r̂ iφ(r), (i = 1, · · · , d− 2)

→ This leads to same energy behavior.
→ This scalar field will have divergent energy when r goes to infinity.
Since this is not the finite energy case, there exists a topological soliton
solution even in the higher dimension (Derrick-Hobart theorem).

Young-Hwan Hyun Area Law in de Sitter Spacetime with Topological Soliton



Introduction
Solutions of our Model

Area Law of the Deformed Geometry
Conclusion

Model Construction
Assumptions and Equations of Motion
Boundary Conditions
Solutions

[10] Our Model

Then how about the entropy changes from this deformation by the
topological soliton?

φi = r̂ iφ(r), (i = 1, · · · , d− 2)

Boundary condition:

φ(0) = 0, φ(rh) = v, M(0) = 0, Ω(rh) = 1
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[11] Assumptions in our Model

1 Dimension : d > 3

2 Gravity theory : minimal, Einstein-Hilbert action with a positive
cosmological constant

SEH =

∫
ddx
√
−g(R− 2Λ)

3 Matter source : spherically symmetric static scalar field

φi ≡ φ̂iφ, φ̂i φ̂i = 1, O(d− 1)⇒ φi = r̂ iφ(r), (i = 1, · · · , d− 1)

4 Field potential : Higgs potential which is chosen in a minimal shape for
supporting static global topological defect

V(φ) =
λ

4
(φ2 − v2)2
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[12] Our Model (Action and Metric Ansatz)

Action

S=

∫
ddx
√
−g

[
1

16πG
(R− 2Λ)−

(
gµν

2
∂µφ

i∂νφ
i + V(φ)

)]

V(φ) =
λ

4
(φ2 − v2)2

Metric in the static coordinate

ds2 = −e2Ω(r)A(r)dt2 +
dr2

A(r)
+ r2dΩ2

d−2

where

dΩ2
d−2 = dθ2

1 + sin2 θ1dθ
2
2 + · · ·+ sin2 θ1 · · · sin2 θd−3dθ

2
d−2

A(r) ≡ 1−∆dS−
( r

l

)2
= 1−

2(#)GM(r)
rd−3

−
( r

l

)2

∆dS =
16πGM(r)

(d− 2)Ωd−2rd−3
, (#) =

8π
(d− 2)Ωd−2

(background geometry)
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[13] Equations of Motion and our Strategy

The equations of motion is given by

Aφ′′ + Aφ′
[
ln(rd−2AeΩ)

]′
−

d−2
r2

φ =
dV
dφ

= λφ(φ2 − v2)

d−2
rd−2

[
rd−3(1− A)

]′
− 2Λ = 8πG

[
d−2
r2

φ2 + A(φ′)2 + 2V

]

d−2
r

Ω′ = 8πG(φ′)2

By using the asymptotic solution and the first law of thermodynamics, we will
derive the entropy of the deformed system.

d(−EδdS) + PδdSd(−VδdS) = TδdSdSδdS → SδdS =
AH
δdS

4Gd

Note that since the system has the pressure, we should consider PdV term.
[Padmanabhan, 2002].
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[14] Results from Solutions

The geometry near the origin is Minkowski space time

No deficit angle by the mild energy configuration

Near the horizon→ A deficit angle ∆deficit (dSd → δdS),

∆deficit = Ωd−2

(
1− (1− δ)

d−2
2

)
(≈ Ωd−2

d− 2
2

δ +O(δ2) for small δ � 1)

( δ = 8πGv2/(d− 3), the positive deficit angle grows as v2)

Horizon radius : r ′H = l → rH =
√

1− δ l =

√

1−
8πGv2

d− 3
l

Temperature : TδdS =
κ

2π
=

√
1− δ
2πl
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[15] Entropy Calculation with dS boundary condition

As in the previous points, we will calculate the entropy as,

SδdS = ∆SδdS + SdS

where

SdS =
AH

dS

4G
=

ld−2Ωd−2

4G

From d(−E) + Pd(−V) = TdS, we get ∆SδdS as,

EδdS≈ Ωd−2
d− 2
d− 3

v2

2
rd−3

H = Ωd−2
d− 2
16πG

ld−3δ(1− δ)
d−3

2

PδdS = Tr
r ≈ −

d− 2
2

v2

r2
, PδdSd(−VδdS) = (d− 2)

v2

2r2
h

Ωd−2r
d−2
h drh

∆SδdS =
AdS

4G

(

−
d− 2

2

)

(1− δ)
d−4

2 dδ
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[16] Result : Area Law for the Distorted dS w/ Topological Defects

Then the entropy for the deformed system is given by

SδdS = SdS + ∆SδdS = SdS +

∫ S(δ)

S(δ=0)
dSδdS

=
Ah

dS

4G
(1− δ)

d−2
2 (11)

SδdS =
Ah
δdS

4G
=

1
4G

`d−2Ωd−2(1− δ)
d−2

2

Therefore, the area law still holds in the deformed system.

δ ↑ ⇒ rh ↓, T ↓, E ↑, P ↑, S↓

As we expected, putting the non-trivial matter distribution leads the negative
contribution to the entropy and in the case of the topological soliton the
entropy changes with a factor of the solid deficit angle.
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Conclusion

When Λ 6= 0, especially, when Λ > 0, in the general
dimensional spacetime, by adding a nontrivial matter
source, we examined the entropy change.

Since we have the non-trivial matter distribution example
which has the exact expression for the entropy behavior in
the classical(or semi-classical level), we could investigate
more about its quantum origin in the subsequent research.
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